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Abstract

Semi-algebraic decision complexity introduces a quantitative finiteness aspect into semi-alge-
braic geometry. In this paper we combine methods from abstract real algebraic geometry and
complexity theory in order to show lower bounds on the arithmetical cost of semi-algebraic
decision trees. In contrast to the topological combinatorial methods the approach is local and
based on the relations computed along paths distinguished by certain well defined points in the
real spectrum of the polynomial ring R[X;,...,X;]. We describe the theme of semi-algebraic
decision trees entirely from the point of view of the concept of the real spectrum which extracts
the local “quintessence” of the behavior of decision trees. Together with the degree argument —
introduced into complexity theory by Strassen [46] — we obtain bounds that apply to concrete
natural problems, and their range of application complements the one of topologically based
lower bounds. Various new applications to test problems around interpolation (solvability of
overdetermined interpolation tasks) and Chinese remaindering are included.

Having a lower bound on decision complexity of a semi-algebraic subset E C R" a further
question naturally arises: Is the set of inputs from R” producing a long path in a decision tree
“significant,” or is it only an unspecified exceptional set of possibly very low dimension? Unlike
the topological combinatorial methods the real spectrum approach provides such information. For
instance, if £ is an irreducible algebraic set then the subset of points in £ producing a short
path has dimension strictly less than the dimension of E.

We discuss complexity questions throughout from the variable and relative standpoint.
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1. Introduction

In a paper of great originality, Strassen [46] introduced the concept of geometric
degree into the field of numerical and algebraic algorithms to prove lower bounds on
the complexity of computing polynomials and rational functions (see also [41,39,1]).
His method (cf. [47]) also gives lower bounds log, deg E on testing membership in
an irreducible algebraic subset £ C R* (R an algebraically closed field) with algebraic
decision trees (only =-branching); for an interesting application see [42].

If R is a real closed field <-branching can be included too, and then the situa-
tion is different. Ben-Or [4] pointed out a way to use the degree argument for semi-
algebraic decision trees (<-branching included) and proved a lower bound on the deci-
sion complexity in terms of log, #£ where #£ denotes the number of semi-algebraically
connected components of the semi-algebraic subset £ C R"; here the degree argument
comes in via a result by Milnor [29] and Thom [48] which has been already used
in previous work by Steele and Yao [43]. Throughout this paper the term decision
tree (algebraic or semi-algebraic) is always understood in the unrestricted sense of a
computation tree with a Boolean output alone.

Subsequently the work of several authors has concentrated on generalizing and re-
fining Ben-Or’s method to connected but nevertheless topologically complicated sets
E. Montafia et al. [32] use intersections with low-degree polynomials to produce many
connected components. Bjorner and Lovasz [6], Bjomer, et al. [7], and Yao [51,52]
relate ranks of higher homology groups to the decision complexity (see also [20]).
For topological lower-bound methods in the parallel model the reader is referred to
the new developments by Montafia and Pardo [31] and Montafia et al. [30]. In [16]
Grigoriev, et al. give a new “number of cases” lower bound for testing membership in
a polyhedron based on the number of facets.

As pointed out in [24] all lower-bound results known so far are grosso-modo based
on degree and differential techniques (see [29,48], and the bounds based on transcen-
dence degree and on the rank of an imperfection module in [12, 11] under this aspect).
In this paper, which presents part of [24], we also use these basic concepts, degree
and derivations, the latter in the complexity theoretic form of the remarkable theo-
rem of Linnainmaa [26] (communicated to the author by Erich Kaltofen), Baur and
Strassen [2] (see also Morgenstern [34]; for a parallel complexity analysis see [21]).
In this way extensions of Strassen’s degree method to semi-algebraic decision trees are
possible.

The classical scenario in algebraic complexity theory is as follows. Assume a fixed
R-algebra A4 (traditionally a rational function field), x € 4", and f € A™ to be given.
The question is: Which are the straight line programs computing f from the input
vector x, and what can be said about their number of computational steps (or result
sequence)? Hereby the straight line programs are assumed to be executable on x, that
is, no divisions by non-units in 4 occur. Considering paths in decision trees leads to a
“dual” scenario turning the straight line program into the object of departure, the input
vector into the “varying quantity,” and assumptions about executability into questions:
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How does the outcome of the tests along a path vary if for different ordered extension
fields (X, <) of R vectors x € K" (rather than x € R") are taken as inputs? Having
such an information, which R-algebras 4 and x € 4" can be assigned such that the
computational steps along the path are executable on x, and which sort of elements in
A is computed? Which paths are “informative,” assuming the decision tree to decide
membership in a semi-algebraic subset £ C R"?

These questions suggest a line for proving lower bounds consisting of two main
steps:

(a) Establish a transition from the set £ C R" and the decision tree to certain well-
defined R-algebras and computations in these algebras producing elements of particular
type.

(b) Use algebraic methods to prove lower bounds on the cost of computing such
elements.

The main tool for achieving the first goal is the notion of the real spectrum, the
fundamental concept for real algebraic geometry introduced by M. Coste and M.F. Roy.
Like for the Zariski spectrum, real geometry and real algebra appear in this concept
as two sides of one thing. The real spectrum can also play the role of a “dictionary”
between geometric and algebraic properties, and for that reason it is central in our
treatment of semi-algebraic decision trees.

Since the theme of algorithmic complexity is situated on the border line between
mathematics and computer science we now first give some explanations about this very
young and so far not widely known notion. It establishes a fusion of ideas from the
Zariski spectrum of a ring and from Artin—Schreier theory. (More comments on main
ideas, their geometric signification and examples with illustrations can be found in the
appendix. For a detailed introduction to this chic theory due to Coste and Roy the
reader is referred to the books by Bochnak et al. [8], Knebusch and Scheiderer [22],
and the article by Becker [3].) Let 4 be a commutative ring. A subset « C 4 is called
a prime cone if it satisfies the following conditions:

(acabea=a+bea,

(iiaca,bca=>a -bea,

(ii)acd=a* €a,

(iv) -1¢aq,

(V) a-bea=>acaor —bea.

{(Note that this definition generalizes the notion of a positive cone of an ordering of a
field. It also generalizes the notion of a point in R"; see below). Prime cones are the
real counterpart of prime ideals and form the points of the real spectrum Spec, 4 of the
ring 4. Analogously as for the Zariski spectrum « € Spec, 4 is called a generization
of B € Spec, 4, and § a specialization of «, if « C B. It is not hard to see from the
definition that « is a prime cone if and only if

a+aCa, a-aCa, aU(—a)=A4,

p =aN(—a) is a prime ideal of 4.
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The prime ideal p = o N (—o) is called the support of « and is denoted suppa.
This gives rise to an equivalent representation of prime cones. Let rp : 4 — k(p) =
Fr(4/v) denote the canonical homomorphism to the residue field of p. Then « induces
an ordering <, on the residue field k(p) defined by

ro(@)/ry(b) 2, 0 <= abca forabecAb¢p.

(Note that if 4 is already a field then p = 0, and « is exactly the positive cone of an
ordering on A4.) Reversely, any ordering < on k(p) defines uniquely a prime cone

o= rp_l({x € k(p): x> 0}).

Hence, a prime cone a can be identified with the pair (suppa, <,). Using this second
representation of prime cones allows to consider elements a € 4 as functions

o — a(er) = Fappal@)

on the real spectrum Spec, 4 with values in all possible ordered residue fields (k(supp =),
<,); one writes a(a) > 0 if rappa(@) >, 0, or equivalently, if a € «. Finally, the topol-
ogy of the real spectrum of 4 is given by the basis open sets

U(ay,...,ar) = {a € Spec, 4 : ay(x) > 0,...,ax(a) > 0},

where ai,...,a; is an arbitrary finite family of elements in 4. A subset € C Spec 4 is
called constructible if it is a Boolean combination of such basis open sets @(al, s QR )
% is open (closed) iff it is stable under generization (specialization). A point (prime
cone) « € ¥ is said to be a minimal point of € (cf. [22]) if € contains no proper
generization f C a, a maximal point of € if € contains no proper specialization § D a.
Since in this paper the word “point” will be used in a different context we will speak
throughout of minimal (maximal) prime cones rather than of minimal (maximal) points.

We now pass to the geometric situation when 4 = R[X],...,X,] is a polynomial
ring. The evaluation of polynomials in a point £ € R* defines the maximal ideal

me = {f € R[X]: () =0} € SpecR[X]

with real closed residue field k(m;) = R and therefore a uniquely determined prime
cone

ag = {f € RIX]: f(&) > 0} € Spec R[X].

Since m, is a maximal ideal o is a maximal prime cone of Spec R[{X]. The points
¢ € R are thus naturally embedded into the real spectrum Spec, R[X] which can be
considered as an enrichment of the Euclidean space R" with further “non-standard”
points. To a constructible subset € C Spec, R[X] we can assign its “standard” part C =
#NR" which is a semi-algebraic subset of R"; if € is a Boolean combination of certain
basis open sets 07/( f1,--->f1), where f; € R[X], then C is the same combination of
the open sets with respect to the Euclidean topology

U fr,-- f)={EER: f1() > 0,..., fu() > O}.



T. Lickteig!Journal of Pure and Applied Algebra 110 (1996) 131-184 135

It is a crucial fact that this process is reversible. If C CR" is semi-algebraic then there
is one and only one constructible C C Spec, R[X] with C = C N R". This assignment,
called operation tilde, establishes an isomorphism of Boolean algebras

{semi-algebraic sets} — {constructible sets}, C > C.

This correspondence is an equivalent form of the transfer principle. From a description
of C one obtains a description of C as above but in the reverse direction; the place
where model theory (e.g. [36,37]) enters is the independence of the description. C
encompasses the full information of solutions in arbitrary real closed extension fields
rather than the solution set C C R*, a first-order formula with parameters in R — a
description of C — being given.

In the case of the polynomial ring R[Xj,...,X,] there is a third way of coding prime
cones o € Spec, R[X] as “vectors” in various ordered residue fields which allows to
view them as inputs for decision trees. Let X = (Xi,...,X,) € R X]". If p CR[X]
is a prime-ideal then X assigns to p the image vector X(p) = (Xi(p),...,Xu(p)) in
k(p)*; vice versa, rp : RIX] — k(p) and hence its kernel can be “reconstructed” from
X (p) since k(p) is generated over R by the elements Xi(p),...,Xy(») € k(p). Hence,
o = (p,<) is uniquely represented by the ordered field “point” over R given by the
pair (X(p), <).

Now we return to decision complexity. Assume 7 to be a decision tree for mem-
bership in a semi-algebraic subset E C R*. Via the identification & = (X(supp ), <4)
every prime cone o € Spec, R[X] can be fed into 7, and by the tilde, 4 decides
also membership in E C Spec, R[X]. For simplicity, let us first assume that E is an
irreducible algebraic set with vanishing ideal p (for semi-algebraic £ see below). If
suppa = p then a belongs to £, and every proper generization f C « belongs to R\ £
since the prime ideal supp f8 is a proper generization of p = supp «. Therefore, its path
Fg will be different from 7,. Consequently, the path 7, followed by o provides a
“verifying control calculation” for the question

“a ; ﬁ”

in the halo hala = {f : f Ca} of generizations of & (hal« is the closure g of « in the
inverse spectral space [22]). That means, for every fCa there will be comparisons
in 7, witnessing the fact f # a. The operational-relational complexity of verifying o
(that is, arithmetic and comparison steps are needed and charged) is closely related to
the operational complexity of computing a cheapest set of functions in the localization
R[X], whose zero-set in the halo of « is o; we call the latter the isolation complexity
of a. In this way we get lower bounds on the arithmetical cost along 7, alone. A
further feature of this local approach is the fact that it bounds the cost along concrete
paths unlike the above-mentioned topological bounds which have global character in the
sense of an overall balance on all paths. Therefore, information on the dimensionality
of the set of points in R” producing a long path is automatic; again by the tilde, for all
o € Spec, R[X] the set of points in R” following the path 7, contains a semi-algebraic
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subset of dimension dim(supp«). The tilde provides even more precise information.
The set of points in E producing a shorter path than a common lower bound on the
isolation complexities of all « € E with support p is a subset of dimension strictly less
than dim £ = dimp. As a consequence of focusing on the cost of “equations for «”
as a source of complexity, problems can be treated that are topologically simple. The
most evident example is the hypersurface of the Newton sum equation Y X7 =1, q
even, which is topologically nothing but a sphere; here the lower bound is of order
nlog, q.

If htp = 1 (E a hypersurface) then the isolation complexity is independently of
o given by the minimum cost of computing a parameter of the real discrete valu-
ation ring R[X],. For this case we give a degree-derivation bound on the isolation
complexity. As mentioned above, the complexity theoretic ingredients for this bound
are the Linnainmaa—Baur—Strassen Theorem and Strassen’s step by step bounding of
degrees along a computation which must however be complemented with further “non-
computational” degree bounding arguments. If htp > 1 then one can choose a real
prime ideal q C p such that (R[X]/q), is a real discrete valuation ring and shrink the
halo of « by passing to the halo in Spec (R[X]/q),; then a similar degree-derivation
bound applies. (For an other method see [11]). Although the discrete valuation ring
property is at present a conditio sine qua non for these bounds it can be expected
that generalizations are possible (for instance, with valuation ring methods). On the
other hand, there are several reduction techniques extending the range of applications
of these bounds (see also [25]). (It remains unknown whether Strassen’s log, degE
bound does also hold true for isolation complexity of prime cones a with supp « = p.
A further open question is whether the isolation complexity of « does only depend on
supp «.)

In the case of a decision tree J for a semi-algebraic E C R" the focus is on the
paths 7, of minimal prime cones « € E; by the minimality, , must verify « in
its halo of generizations. This property is intrinsic and a common behavior of all
decision trees for £ while their behavior on non-minimal prime cones « € £, in
particular on points of E, may be individual. In short, the behavior of the tree I
on the set of minimal prime cones E™ is decisive which is not visible on the level
of semi-algebraic sets. This underlines once more the fundamental significance of the
concept of the real spectrum. As has been pointed out by E. Becker, the complexity
theme gives the space E™ (cf. [22]) an important role. These are the reverse ends
of the maximal chains of specializations ([8]) in E, called spears in [22], while the
space of their tips E™ plays already the role of a natural compactification of E. If
a € E has support 0 (appearing if and only if dimE = n) then « has no proper
generizations, and verification of « provides no information. Generally, the symmetric
view of a decision problem as a partition {E,E’}, E' = R"\ E, is more adequate. Then
the boundary of E yields the complexity creating set ((E N E"y~)y™® which of course
coincides with £ iff dimE < n. This is also the critical set for partions which are
not “full,” that is £ UE’ # R"; ENE is then the common boundary of E and E’.
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Such partions (decision problems) naturally arise when the inputs from R" are actually
outputs of computational preprocesses. Although not directly related with our theme,
we would like to mention that a main step in Artin’s classical solution of Hilbert’s
17th problem can be considered as the passage to minimal prime cones (orderings of
the rational function field), it appears also recently as a step in the Brocker—Scheiderer
theory.

Let us now summarize the organization of this paper.

As explained above, straight line programs for computations in commutative alge-
bras will be primary objects of consideration. In Section 2 we start with some pre-
cisions on this basic computational notion. According to the very old song in com-
puter science education of separating syntax and semantics we make a strict distinction
between these syntactical objects which can be executed in any R-algebra and their
result sequences. Inputs and result sequences are arbitrary points over R (vectors in
various R-algebras); as indicated at the beginning (tentative) execution of a straight
line program I" on input vectors in different R-algebras, executability-non-executability
(units—non-units) will be the source for getting information about I". We also dis-
cuss the heterogeneous view of Birkhoff and Lipson [5] and the variable point of
view with respect to coefficients. The latter, that is to say the category flac of ar-
rows of commutative rings rather than the category of commutative R-algebras (R
fixed), provides more freedom and a comfortable ground with a suitable definition of
morphisms. This is important for separating canonical arguments on the basis of an
application of a morphism from the various “reduction techniques,” notably those of
transfer type, to be subsumed under the key word partial morphism in flac. (In fact,
many ad hoc considerations in complexity theory become “natural” only in flac; see
[24,25])

To make the paper self-contained we recall in Section 3 Strassen’s degree method
together with an arsenal of classical techniques for bounding degrees. Degree is a clas-
sical notion for algebraic sets, algebraically based on dimension and multiplicity theory.
However, departing from the execution of a straight line program we find ourselves
completely on the algebraic side. Thus, defining degree directly for points over fields
rather than the more traditional style of associating algebraic sets is somewhat more
flexible since it is closer to the objects under discussion. We describe Strassen’s degree
method entirely within the framework of such points. Executability conditions directly
translate into non-zero divisor conditions, and classical degree bounding techniques
(including coefficient reduction) simply appear as degree inequalities between points
over different fields.

In Section 4 we equip straight line programs with additional comparison instructions
and discuss what they verify in a general fashion. These “verifiers” essentially consti-
tute the paths in decision trees. We start the discussion with verification of “abstract”
points which directly gives the connection to certain operational complexities by fo-
cusing on ‘“equational consequences.” Later on the tilde will be used to establish the
bridge to semi-algebraic decision complexity. The language introduced will be also used
in [25].
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Section 5 contains the above-mentioned degree-derivation bounds which are exempli-
fied in Section 6 for several decision problems. Whether testing important polynomials
such as resultants, discriminants, subresultants, Hankel determinants, or Hurwitz deter-
minants have non-linear lower complexity bounds remains an open problem. Concrete
bounds on computing specific polynomials given in [2] and [44] remain essentially true
for testing them. (For applications to randomized decision trees see [10].)

Besides the general study of and search for concepts providing an understanding of
the various causes for algorithmic difficulty a main aim of a theory of lower bounds
manifests in the idea and vision of finally supplying a rather complete knowledge of
the complexities of natural and omnipresent computational and decisional problems in
computational practice. In the spirit of such a program section 7 is entirely devoted
to test questions around various interpolation problems and Chinese remaindering. The
lower bounds shown remain correct for the related decision problems for Q-rational
points. (For decision complexity and rational points, see also [4, 19, 50].)

Finally, we mention that lower bounds on decision trees entail in bounds for the
uniform model of real Turing machines due to Blum et al. [9]. This theory takes the
finitary view with respect to programs versus sequences of trees; the result by Meyer
auf der Heide [28] shows strong evidence that the real knapsack problem may be a
candidate to distinguish the uniform and the non-uniform notions of complexity. The
author completely agrees with the credemus of [9] that a reasonable amalgamation of
theoretical computer science and mathematics will eventually bring solutions to the
innumerable complexity questions.

2. Straight line programs and computations in commutative algebras

Let ac denote the category of commutative rings and acy the category of commuta-
tive R-algebras. (R € ac will usually be a field.)

Points. Let R — A be a commutative R-algebra written in form of its structural
morphism in ac. An “(n-)vector”

x=(R o 4A;x1,...,%x,)

with x; € 4 is called a (R — A)-valued (n-)point; x is said to be zero if A =0, a field
point if A is a field. The set of these points is denoted A}_, ,; points in any A%_, , are
called points over R.

Arithmetic. Following [45] commutative R-algebras will be considered computa-
tionally as partial algebras in the sense of universal algebra (e.g., [13,15]) of signa-
ture

QR =RU{0,1,+,—,%/}.

In every R-algebra R — A every operational symbol @ € QF acts as a partial operator
wy @ A"@)Sdefw, — A of arity ar(w) where 4 € R acts as the unary multiplica-
tion with the scalar A, the only partial “/” as division by units, and 0,1 as constants
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(nullary). Hereby the phylum (= carrier set) of R — A is considered to be (the
phylum of) the ring 4. So QF is a possible signature for acg. (One may also write
A instead of R — A if the conception of 4 as an R-algebra is clear from the con-
text.)

Remark 1. Let x € A%_, , be a point over R as above.

(1) Its “head” R — A4 is thought to carry the information about the arithmetic in the
above sense; for notational ease this head will usually be suppressed, and one simply
writes x = (x1,...,%,)-

(2) Let R[x] C A denote the finitely generated R-subalgebra generated by the coordi-
nates xp,...,X, € 4 in the usual sense without division (i.e., signature RLI{0, 1,4+, —, *}).
Then the full QR-subalgebra generated by the coordinates, denoted R(x], is the local-
ization of R[x] with respect to the multiplicative system of all elements becoming
units in 4. So R(x] lies between R[x] and the total ring of fractions R(x) of R[x].
The point x defines points t(x) € A%_z,y and fi(x) € A;li—vR(x}e with the same coor-
dinates which may be called the (R-algebra) forso resp. the Q*-torso (or full torso)
of x.

(3) The point x can also be viewed as the R-algebra morphism of evaluation

e R[Xy,.... X, ] — A4, X;— x;

having image R[x]; its kernel (ideal of relations) is denoted ann x. So for fixed » points
over R are in one-to-one correspondence with R[.X3,...,X,]-algebras.

Straight line programs. An QR-straight line program (QF-SLP) T' = (I'y,...,T})
over n € N is a sequence of computational instructions IT'; of the form

Si = (Di(Sj“, - ’Sji m(wi)),

where s_,,1,...,5, are program variables, w; € OF, and —n < j;, < i for all i,a. An
input for ' is any point x = (x1,...,%,) in any A}_,,. Assigning the (input) variables
s; (i € 0) the values x,; one can execute for i = 1,...,¢ the instructions I'; in R — 4.
If no division by a non-unit occurs then I" is said to be executable on x, and yields a
result sequence

Res(T,x) = (Font1 =X1y-- s Fo=XnsF1,..., 1) € AR .

The pair (T, x) may be called an Qf-computation in R — A. (T',x) (resp. I') is said to
compute f € Af_, , (on input x) if I' is executable on x and all f; appear in the result
sequence Res(I',x). If 1 : m — n+1¢ is an assignment (£ € N viewed as the /-elements
set) and I is an QR-SLP over m then the “interface” 1 defines the composition I'o, I
in the obvious way. (Usually 1 will be clear from the context.)

Every Qf-SLP T over n has an (essentially) unique universal input ur of the form
ur = (Uy,...,Up) € A;_,AF, where Ar = R[U]y for some denominator d € R[U], with
the property that I' is executable on some x € A%_,, if and only if there is a unique
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R-algebra morphism
Ar

/

R

N

A

with (ur); — x; [11]. T’ is said to be nilly if it is unexecutable on any non-zero point.
This means that ur is zero (so in any case the U; above have to be interpreted in
Ar). Clearly R(ur] = Ar, and if R is a field and T" is not nilly then e, is injective,
Rlur] = R[U], and R(ur) = R(U).

Complexity. Let ¢ : Q8 — N be a cost function, x € A%_ ,, f € AZ_ ,. The com-
plexity L(c,x, f) of computing f from x with respect to ¢ is defined as the minimum
c-length L(c,T") = E;=1 c(w;) of an QE-SLP T over n computing f on input x (with
the convention min @) = oo throughout this paper). Pairs (c,x) are called complexity
data on the algebra R — A.

It is clear that complexity cannot increase if one applies an R-algebra morphism, and
a skillful choice of an R-algebra morphism reducing complexity may be a step in prov-
ing lower bounds. However, certain indispensible processes such as scalar extension,
restriction, coefficient conjugation, etc., should be included too.

The heterogeneous view, and the variable standpoint with respect to coefficients. In
contrast to viewing a commutative algebra R — A as a homogeneous partial Q%-algebra
(one phylum), one can also view it as a heterogeneous partial algebra (see [5]) with
the two phyla R and A of signature

{0,1,+,—,%,/}u{e} U {0,1,4+,—,%,/},

the first portion acting on R, the last one on 4, and the scalar multiplication ¢ : Rx4 —
A4 in the “mixed” way. (It is clear that one can generally define heterogeneous SLPs
with heterogeneous inputs and outputs.) Thinking for simplicity of coefficients to be
free at disposal one may omit the first portion, and

Q= {0‘}|.|{0,1,+,—,*,/}

establishes a heterogeneous signature on the wider category (of diagrams) flac of all
algebras R — A of commutative rings whose morphisms are commutative squares

R——4

R— 4.
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If the algebras (the horizontal arrows) are given a morphism ¢ in flac is given by the
pair (¢1,¢2), and ¢ induces functorially a mapping

A;) : A;’(—»A — Aﬁ'—»A” X = xl - (¢2('x1 )7" . ’¢2(x"))'

(For the functorial view in general see e.g. [14]). For simplicity, we write ¢(x) instead
of Aj(x), and if ¢ is clear from the context we will simply speak of the image x’
of x in A%,_, ,,. For fixed R one obtains back the homogeneous signature ® from 2
by individualizing scalar multiplication. For simplicity, we will keep the homogeneous
view in what follows. In this hybrid sense of varying signatures a morphism ¢ in flac
carries over an 2R-computation (I',x) in R — 4 into an Q -computation (I",x') =
#(T,x) in R — A’ where ¢, induces a mapping Q8 — QR (also denoted by ¢;)
giving rise to a program transformation T — I = ¢(T") in the obvious way. If ¢,
is surjective then every QR -SLP can be lifted to an QR-SLP; if ¢ 1(4'%) = 4% then
every 2R-computation (I',x) in R — 4 is executable if and only if ¢(I,x) in R'—4’
is. The second condition is, for instance, satisfied in each of the following cases: ¢,
is surjective and ker ¢, Crad4 (Jacobson radical), ¢, is a local morphism of local
rings, and ¢ is faithfully flat. If both conditions are satisfied then we call ¢ surst (¢,
surjective and ¢, strong (cf. [15]) with respect to signature {0,1,+,—,*,/} on ac).

If (¢,x) and (¢,x") are complexity data upstairs and downstairs then it is clear that
for any f € Af_

L(c",x', ¢(f)) < Lie,x, ) + L{c', X', ${x))

if ¢ 2 c’o¢y. Reversely, if 7 : N — N is any function then ¢ is said to be t-autarkical
(autarkical if © = id) for f with respect to (¢,x) and (¢’,x") ([45], [24]) if one has
an inverse inequality

L(c,x, f) < o(L(c,x', ¢(f)))-

Autarky results, which are helpful for proving lower bounds, can be proved if one
has lower bounds on the following complexities. The relation complexity of a proper
ideal a C 4 is defined as

R(e,x,a) = min{L(c,x, f): f € a\ {0}};
the non-unit complexity is defined as
N(c,x) = min R(c,x, a).
aC4d

Lower bounds on these complexities in certain cases will be a by-product of the in-
vestigations of this paper.

Lemma 2. Let x' € A} _ ,, be the image of x € A}_,, with respect to a morphism
¢ = (1, ¢) in flac, o’ C A’ an ideal with contraction a C A with respect to ¢,.
(1) If ¢ > ¢’ o ¢y and R(c,x,a) < R(c,x,ker ¢), then R(c,x,a) > R(c',x',a").
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(2) If ¢ is surst and ¢ = ¢’ o ¢y, then R(c,x,a) < R(c',x’,a’).

Proof. (1) If (T',x) is a computation in R — A for some f € a \ker ¢, with L(¢,T") =
R(c,x,a) then ¢(I',x) is one in R" — A’ for some f' € a’\ {0}.

(2) Any computation (IV,x') in R’ — A4’ for some f’ € a’\ {0} can be lifted to a
computation (I',x) in R — A4 for some f €a\{0}. O

Proposition 3. Let x' € A}, _, ,, be the image of x € A}_, , with respect to a morphism
¢ = (¢1,¢2) in flac, ¢ surjective, and ¢ = ¢’ o ¢y. Then the following hold.

(1) If f' € 4’ is non-zero and ¢;'(f') N4> = 0, then L(c',x',f') > N(c,x).
In particular, N(c',x’) > N(c,x) with equality if ¢ is surst and N(c,x) < R(c,x,
ker ¢,).

Q) If 4 #0, f AL, L(c,x, ) < min{N(c, %a), 3(R(c, x, ker ¢p2)—c(—))}, where
Xred denotes the image of x in Ag_, , then ¢ is autarkical for f with respect to
(¢,x) and (c',x").

3) If f € A2, L(c,x, ) < 3(R(c,x,ker ¢y) — ¢(—)) and ¢ is surst, then ¢ is
autarkical for f with respect to (c,x) and (c',x').

Proof. (1) If (I',x’) computes f’ and (T,x) is lying above it (that is, ¢(I',x) =
(I'",x’)) then either (I',x) is executable, and then it computes a non-zero non-unit
in 4, or (T,x) is unexecutable, and then the maximal initial segment of I' which is
executable on x must produce even a non-nilpotent non-unit in 4. By Lemma 2 equality
of non-unit complexities holds under the assumptions made.

(2) Assume L(c,x, f) > L(c’,x', $(f)), and let (I',x") compute ¢(f) with L(c’,T")
< L(c,x, f). If (T',x) lies above (I”,x’) then it must be executable since by assumption
Lic,x, /) < N(c,%wed), and it computes some g # f with ¢(g) = ¢(f). Composing
(T',x) with an optimal computation for f and using one further subtraction yields a
non-zero element % € ker ¢ with L(c,x,h) < R(c,x,ker ¢,), a contradiction.

(3) Analogously as (2) above. O

Rational operations. For technical reasons we will also use a wider set QRO QR
of rational operations in some places. A rational operation w of arity a is a pair of
polynomials @ = (6,n) € R[Ti,...,T,)* (written as w = 6/n); if x € A%_,, then ©
is defined on x if 6(x) € 4 is a unit, and in the affirmative case its value is defined
as w(x) = B(x)/r](x) Let QF denote the disjoint union of rational operations of any
arity. Clearly, QR is also a possible signature for acg having in every R-algebra the
same clone of action (cf. [13]) as QF, and everything said about 2-SLPs applies to
QR_SLPs. (Only the above calculus interruptus argument in Proposition 3 needs some
proviso; one should assume the cost function ¢ on QR to be “denominator compatible,”
that is, c(68/1) > c(yn/1) for all operations 8/n.)

Finally, a vector operation © = (®y,...,0;) € (QR)’ of arity a is a list of ration-
al operations of common arity a; it is clear that w can be viewed as an QR-SLP
over a.
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3. The degree method

In this section we briefly recall the notion of degree, Strassen’s degree bound, and
several facts about degree to be applied later on.

We assume R to be a field throughout this section. If x € A%_ , is a non-zero
point over R then its dimension dimx is defined as the Krull-dimension of R[x] =
R[X1,...,X,])/annx. Yts Hilbert function H(x,t) is defined as the Hilbert function of
annx (cf. [27]); if R[X]" C R[X] denotes the R-vector subspace of all polynomials
of degree < t, then H(x,t) is the R-vector space dimension of the finite-dimensional
subspace R[X]<)/annxNR[X]SY) of R[x]. It is well known that for large ¢ the values
of the Hilbert function are given by the values of an univariate polynomial of degree
dimx, called the Hilbert polynomial,

dim x ¢
= h; fi .
H(x,1) § ,(x)< dimr — ,-) or 1> 0
The coefficient ho(x) > 0 of the leading term is called the degree of x and is denoted
degx.

Example 4. (1) Let X = (X3,...,X;) € AR rix) Then annX = 0, dimX = », and
degX = 1. X is the universal input of any division free QX-SLP over n. Generally, if
T is not nilly then dimur = n, degur = 1.

(2) Let s = (X 1,.... X, Y,) € A\j‘e’ﬁR[&n (Segre). Then anns C R[Sy1,...,8ym] is
the determinantal ideal generated by all 2 x 2-minors, dims =n+m — 1, and degs =
("™72) (ef. [17, p. 54]). (This will be used in Section 5.)

We call a polynomial f € R[X] a non-zero divisor of the point x, or x-regular, if
f is A-regular (cf. [27]) via the substitution e, (see Remark 1(3)), and the element
e(f) is said to be presented by f. Analogously, we speak of an x-regular sequence
f1,.... fr € RIX].

If x € A}_,,, vy € A%, then their concatenation

n+m

(X155 X, V1.5 Ym) € AT,
is denoted by xy. If x € A}_,,, v € A%_ ; then their join is defined as
xxy=xQL...%Q1L1Qy,...,1Q ym) € AR 0 5

For completeness we summarize some facts about dimension and degree that will
be used freely in the sequel, in particular inequalities of Bézout type. (A more general
inequality of great significance for complexity theory has been given by Heintz [18];
for a very thorough treatment of Bézout equalities and inequalities the reader is referred
to the book by Vogel [49].)

Proposition 5. Let x € A}_,, be non-zero, R a field.
(1) If R[x] is integral with quotient field R(x), then dimx = tr.deg, R(x).
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(2) If y € A}_,, satisfies ) Ry; + R = Y Rx; + R, then dimy = dimx, degy =
degx.

(3) Let A — A’ be a morphism of rings, x' the image of x in Ay_, .. If x' is non-
zero, then dimx’ < dimx, and if equality of dimensions holds then also degx’ < degx.
If R[x] — R[x'] is injective, then dimension and degree equalities hold.

(4) (Join) If y € A%_ g is a further non-zero point over R, then dimx < y =
dimx + dim y, degx < y = degx - deg y.

(5) (Projection) If xy € A", is the concatenation of x and some y € AR_, ,, then
dimx < dimxy. If equality of dimensions holds or if A is an integral domain (or if
R[xy] is unmixed and reduced), then degx < degxy.

Let x' be the image of x in A, -, where f € RX], x' being non-zero.

(6) (Bézout) If f is an x-regular polynomial then dimx’' < dimx — 1; if this is an
equality then degx’ < degx - deg f.

(7) (Bézout reduced) If f is an x-intersecting polynomial (that is, f is xpeq-regular
where x.eq denotes the image of x in Ay_, 4 ), then dim(x")red = dimx’ < dimx — 1;
if this is an equality then deg(x')eq < degx - deg f.

Proof. (1) See [27, Theorem 5.6].

(2) This is clear since x and y have the same Hilbert functions.

(3) Since annx Cannx’ we have H(x',t) < H(x,t). Comparing leading terms of
Hilbert polynomials the statement is evident.

(4) One has H(x > y,t) = >, H(x,i)-H(y,t—i)=>, H(x,i)-H(y,t—1—1i) (see
[49, p. 61]). Replacing for large arguments Hilbert functions by Hilbert polynomials on
the right-hand side one finds H(x b4 y,t) = degx-deg ¥ - (g yiaim,) T -+ for >0
(see [49, p. 61]).

(5) Without loss of generality, we may assume m = 1. Since e, is the composition
R[X]—R[X, Y]—ex—y>A we get H(x,t) < H(xy,t). So dimx < dimxy, and also degx <
degxy in case of equal dimensions. Viewing xy as the image of x a y in Aﬁﬂ 4
and using (3) above we have dimx < dimxy < dimx < y < dimx + 1. If now 4 is
integral and dimx = dimxy — 1 then dim y = 1, R[x < y] = R[x] ®x R[y] is integral
and R[x < y] — R[xy] is injective. By (3) above degxy = degx p< y = degx, since
degy=1.

(6) By definition, if f is x-regular it is A-regular. A forteriori f is R[x]-regular.
R[x] — R[x'] factors as R[x] — R[x]/fR[x] — R[x'], so by Krull’s Principal Ideal
Theorem and the assumption on Krull dimensions, dim R[x'] = dim R[x] — 1, we have
dim R[x]/fR[x] = dim R[x]— 1. Let % denote the graded R[Xy,...,X,], * annx C & and
hf € & denote the homogenizations of annx and f. By assumption *f is a non-zero
divisor of the graded #/"annx. A classical version of Bézout’s Theorem (e.g. [49])
now says that deg(® annx + % &) = deg(" annx) - deg(" /). So by dehomogenization,
the assumption on dimension, and from (3) above we conclude degx-deg f > degx” >
degx’ where x”" € A} o cpr,y is the point associated with the evaluation R[X] —
RIx)/fRIx].

(7) This follows from (6) using (3). O
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Remark 6. By Proposition 5(3) a point over R has the same degree (and Hilbert
polynomial) as its torso, the latter allowing apparently application of more morphisms.
Such partial morphisms (in acg) will be used (implicitly) in many places. Others
in connection with degree appear in the proof of Theorem 32 and in Lemma 51
(in flac); in connection with complexity see Lemma 42 and also [24], [25] where
deformations of algebras and approximative complexities are used as an instrument to
prove lower bounds on decision complexity. A partial morphism in flac is simply a
diagram

R” . A”

[

R — 4

||

R/ N Al
where the top one is a monomorphism in flac.

Let v = (w1,...,w,) be a vector operation of arity a with universal input u,. If @
is not nilly then we define its degree degw as the degree of the concatenated point
u,w(u,) € AG 4, Which has dimension a by Proposition 5(1) (note that viewing w
of arity @’ > a does not change the degree by Proposition 5(4)).

Example 7. Let ® = 6/n € OF, 9 and n being relatively prime. Then degw =
max{deg 6,1 + degn}. So for the operations in QF, deg(x) = deg(/) = 2, the oth-
ers having degree one.

The following lemma is the key step in the proof of Strassen’s degree bound. For
later use we formulate it for vector operations.

Lemma 8. Let @ = (wy,...,0;) € (QR)’ be a vector operation of arity a, R being a
field If x € A%_,, is non-zero and o is executable on x, then for the concatenated
point xo(x) € AF”
dimxw(x) = dimx, degxw(x) < degx - degw.

Proof. Consider the non-zero join j = x b< uyw(u,) € Ag%4e | having dimension
dimx + a and degree degx - degw by Proposition 5(4). Write 4, = R[U),...,U,ls
for some d € R[U]; then 4 ®g A, = A[U],. Since w is executable on x the value
of the polynomial 4 € R[U] at x is a unit in 4, so d is a non-zero divisor of A[U].
Considering the substitution e; : R[X, U, W] — A[U], associated with j we see that
the linear polynomials Uy — Xj,...,U, — X; € R[X,U,W] form a j-regular sequence
since for i = 1,...,a the image U; — x; in A[U] has leading coefficient one with
respect to U;. Since degxxm(x) = degxw(x), and dimxxw(x) = dimxwm(x) > dimx
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(by Proposition 5(2) and (5)) we can use Proposition 5(6) successively to conclude
dimxxw(x) = dimj — a = dimx, and degxxw(x) < degj = degx - deg w, hence the
assertion. O

Theorem 9 (Strassen [46]). Let R be a field, and x € A} _,,, f € A}_ 4 be non-zero
points over R. Then for the multiplicative cost function c. = 1(, : O - N,

L(ce,x, ) > log, degx f — log, degx.

Proof. Let T be an QF-SLP over n computing f on x having c,-length /. Then by
Lemma 8 (repeatedly) dimx = dimRes(I',x) and degRes(I',x) < degx - 2!, From
Proposition 5(5) we get dimx < dimxf < dimRes(I',x) = dimx, and therefore (again
by Proposition 5(5)) degxf < degRes(I',x) < degx -2/, whence the assertion. O

In order to prove lower bounds on complexity we need some further facts about
dimension and degree collected in the following proposition.

Proposition 10. Let x € A}_, , be non-zero, R a field.

(1) (Scalar extension) Let K DR be an extension field, and let xX be the image
of x in A%_ye . Then dimx¥ = dimx, degx® = degx.

(2) (Scalar restriction) Let k CR be a subfield, and let x be the image of the
(uniquely determined) point *x € A}_,,. Then dimx < dim*x, and in case of equal
dimensions (which holds true if k CR is algebraic) degx < deg*x.

(3) (Absorption of coordinates into the coefficient field) Let y € A%, be a further
point over R, and let yrx be its image in AR, ,,. Assume Rx] to be an integral
domain with quotient field R(x), and set yre) = (Vr)*® € ARy kiyorgs 178
dimx + dim yry) < dimxy. If this is an equality (which holds true for integral A),
then deg yr(x) < degxy.

(4) (Zero-dimensional points) If dimx = 0, then degx = dimg R[x] and vice versa.

Proof. (1) One has H(x,t) = H(xX,t) since the scalar extension does not change
vector space dimensions.

(2) x is the image of (*x)®, so the statement follows from 10(1) above and Propo-
sition 5(3). If kK CR is algebraic then k[X] — R[X] is flat and integral; so dim*x =
dim x.

(3) Without loss of generality we may assume n = 1. If R(x) is algebraic over
R then by Propositions 5(1) and (2), and 10(2) above we have dimx = 0, dimy =
dim yp(y) = dim(xy)re) = dimxy, and deg yre) = deg(xy)re) < degxy.

Assume tr.degp R(x) = 1. By (1) above dim(xy)**) = dimxy and deg(xy)*® =
degxy. The kernel of R(x) ®r A — R(x) ®gpx) A contains the non-zero-divisor 1 ®
x1 —x; ® 1 which obviously can be presented by a linear (xy)**)-regular polynomial.
Therefore, dim yp(xy = dim(xy)ry) < dim(xy)*® —1 by Proposition 5(2), (6) and (3),
and in case of equality also deg yrq) = deg(xy )rery < deg(xy)R™.

(4) If dimx = 0 then degx = H(x,t) = dimg R[x] for large . O
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4. Verifiers and decision trees

In this section we equip SLPs with additional test instructions; these will later be
assigned to paths in decision trees.

Verifiers. Let n € N, and P = {=,<} (resp. P = {=}). An (Q&,P)-SLP Y =
(©0,1'1,01,...,T,,0;) over n is an alternating sequence of computational instructions
I'; (as before) and sequences of test instructions ©; of the form

Shilpilsh,{17 e 7Sh,-/ipi/ish;/_a

where p;; € P, and h;;, A ; < i. An input for T is an ordered field point x (resp. a
field point in the order free situation when P = {=}) over R, that is a pair x = (x, <)
where x € A}, and (K, <) is an ordered field. If T is executable on x, that is,
I(T) = (I'y,...,T';) is executable on x, then it produces an truth value tr(Y,x) €
[T—o{yes,no}’" according to the outcome of the tests. For arbitrary ¥ we denote by
T, the maximal initial segment of T executable on x. Let F be a set of ordered
field n-points over R (resp. field points), ECF a subset. Y is said to verify E in
F if it is executable on all x € E, tr(T,x) = tr(T,y) for all (z,9) € E x E, and
tr(Ty,x) # tr(YTy, ) for all (x,9) € E x (F\E). (Note that verification is one-sided,
that is, T is not necessarily a verifier for the complement F\E.)

Complexity. The verification complexity V(c,E,F) with respect to a cost func-
tion ¢ : QfUP — N is defined as the minimum c-length L(c,T) = Y5, c(w:) +
>is0 2 j<e, €(pij) of a verifier T for E in F. B

Passing to a subpair does not increase verification complexity.

Remark 11. (1) ¥(c,G,H) < V(c,E,F) if (G,H) C(E, F).
() V(c,E,G) < V(c,F,G)+ V(c,E,F) if ECFCG.

Proof. (1) Every verifier for E in F is also a verifier for G in H.
(2) One can manufacture a verifier for £ in G by composing one for F in G and
one for £ in F. O

Next we parametrize verification complexity with reference points x € A}_ , and
subsets in the real spectrum (cf. [8]) of A (resp. Zariski spectrum of 4). Let o €
Spec, 4 be a prime cone with support p (resp. p € SpecA); x assigns canonically to
o the ordered field point x(x) = (x(p), <,) (resp. the field point x(p)) over R, where
x(p) is the image of x in AR k(p) k(p) denoting the residue class field of p. If ECF
are subsets in Spec 4 (resp. in Spec4) then the verification complexity V(c,x,E,F)
with respect to x is defined as V(c,x(E),x(F)).

Proving lower bounds sometimes requires to change the reference point; the follow-
ing remark is evident.

Remark 12. V(c,x,E,F) > V(c,y,E,F) — L(C, y,x) for y € A%, and the restriction
¢ of ¢ on X,
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If n € N is fixed, and X = (X3,...,X;) € A}_ gy then the assignment a — X(a)
(resp. p — X(p)) is one-to-one; these points X («) (resp. X(p)) are precisely the QF-
torsos (plus induced ordering) of ordered field n-points (resp. field n-points) over R.
Since passing to 2%-torsos does not change verification complexities one may assume
for fixed n without loss of generality inputs to be points in Spec, R[X] (in Spec R[X]),
thereby identifying o« and X («) (resp. p and X(p)).

Remark 13. Note that the notation X (a) differs from the respective one in [8] where
the ordered field (k(suppa), <,) is replaced by the real closure k(a). By the remark
on NR-torsos above this clearly does not harm. The situation is however different when
operations of Nash type like |/~ are allowed. Then the image of x in A} _,,, becomes
relevant.

The second part in the next statement strengthens the above remark on subpairs.

Proposition 14. Let E C F C Spec, R[X] and G CH C Spec, R[X] be subsets.

(1) There is a verifier for E in F if and only if E is the trace in F of a elementary
locally closed subset of Spec, R[X] (that is a subset which is a finite intersection of
subsets of the form {a: a(a) > 0} or {a: a(a) # 0}, a € R[X]).

(2) Assume for all o € F the zero-sets % (suppa)C Spec, R[X] to satisfy a €
Z(suppa) NG if e € E and o € Z(suppa) N H\G if « € F\E. Then every verifier
for G in H is a verifier for E in F, as a consequence, V(c,G,H) > V(c,E,F).
(Analogously, for subsets in Spec R[X]).

Proof. (1) This is clear.

(2) Let T be a verifier for G in H. For every « € Spec, R[X] the subset {f: Tg=
Yo tr( Ty, B) =tr(T4 o)} C Spec, R[X] is an elementary local closed subset containing
«. Therefore, its trace in Z(supp«) is a neighborhood in Z(supp«) of o. So we see
that T indeed verifies also E in F under the assumptions made. [

For verification complexity with respect to a reference point x € A}_, , morphisms
in flac provide relative lower bound in a general manner by passing to fibers. (This
will especially be used in [25].)

Proposition 15. Let x’ € A},_, . be the image of x € A}_,, with respect to a mor-

phism ¢ = (¢, ¢2) in flac.
(1) If ¢ 2 ¢’ o ¢, then for E CF C Spec, A,

V(e,x,E,F) > V(c',x',(Spec, $2)™"(E), (Spec, ¢2) ™" (F)).
(2) If c = ' o ¢y and ¢y is surjective, then for E' CF' C Spec A4’,
V(c',x',E',F") = V(c,x,(Spec, 1 )(E"), (Spec, p2)(F")).

(Analogously, for subsets in SpecA.)
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Proof. (1) This is evident since the image ¢,(Y) of a verifier T for x(E) in x(F) is
one for x'((Spec, ¢2)~'(E)) in x'((Spec, $2)~(F)).

(2) Let T’ be a verifier for x(E") in x'(F’) and choose T lying above it, that is,
¢1(T) = T'. Then obviously T is a verifier for x(E) in x(F) where E = (Spec, ¢ XE’),
F = (Spec, ¢2)(F"). So V(c,x,E,F) < V(c',x',E',F’). On the other hand,

V(e,x,E,F) > V(c',x',(Spec, ¢2)~'(E), (Spec, 1)\ (F)) = V(c',x',E',F")
by (1) above and the remark on subpairs above. [
For x € A}_,, and o € Spec A4 the verification complexity V(c,x,a) of o itself is
defined as the verification complexity of {«} in its halo of generizations hala = {§ :
B Ca} in Spec, A. Analogously, ¥ (c,x,p) is defined for p € SpecA.

Related operational complexities. Let ¢ : @8 — N be a cost function and x € A}__,.
For a € Spec, 4 its isolation complexity is defined as

I(c,x,a) = min{L(c,x, f): f € AF_ ,,m € N,{a} = Z(f)Nhala}.

Analogously, the isolation complexity /(c,x,p) of a prime ideal p € Spec 4 is defined.
The exclusion complexity of p € SpecA is defined as

E(c,x,p) = min{L(c,x, ) : f € p\nil4} = R(¢,Xreq, P).

Finally, if 4 is a field and BC 4 is a real discrete valuation ring with uniformization
parameter u then its sign complexity is defined as

S(¢,x,B) = min{L(c,x,eu") : e € B*, r odd}.

In the sequel when x € A%_,, and a C 4 is an ideal then x/a denotes the image of
x in Af_, e similarly if p CA4 is a prime ideal we write x, for the image of x in
A;——»Av‘
Lemma 16. Let x € A%, ,.

(1) If pDp' D p” are prime ideals in A, then

E(c, (x/p")p:p) = E(c, (x/p")p,P) < E(c, (/P )pr, ')
and one of these is an equality.
(2) Let A be a field, (B,m) C A a real discrete valuation ring. If x is the image of
X € A}_,, then S(c,x,B) > E(c,%, m).
(3) If hala # {a} for o € Spec, A (resp. halp # {p} for p € SpecA), then
I{c,x,suppa) > I(c,x,a) > E(c,x,supp o)
(resp. I(c,x,p) > E(c,x,p)) with equality if A is integral and 0 is the only proper

generization of supp o (resp. p).

Proof. (1) Consider the canonical R-algebra morphisms

(A/p")p — (A/p")p — (4/p" )y,
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where the first one is local, so surst. By Proposition 3(1) we have

N(e,(x/p")p) 2 N(c, (x/p")p) < N(e, (x/p" ).

If the first inequality is strict then, by Proposition 3(1) again and Lemma 2(1),

N(C, (X/p,/ )P) Z R(C, (x/p/l )p, P/) 2 R(C, (X/p,/ )p's p,)a
so the second one is then an equality.
(2) Consider B — A. If f € A*\B* then L(c,x, f) > N(c,x), by Proposition 3(1).
(3) This is clear. [

Remark 17. The difference between sign and exclusion complexity in Lemma 16(2)
may be arbitrarily large (cf. [25]; see also Example A.2(3)). The same holds true for
isolation and exclusion complexity in Lemma 16(3) (e.g. [11], Corollary 20 provides
an example).

Remark 18. We mention the following “complexity theoretic identity theorem™: Let
x € Ay, f € Af_, where (4,m) is a local integral domain with quotient field
k(0) and residue class field k(m). If L(c,x, f) < %(E(c,x,m) — ¢(—)) then the both
R-algebra morphisms

k(0) — A4 — k(m)

are autarkical for f with respect to (c,x) and (c,x(0)) resp. (¢, x(m)), by Proposition
3(2) and (3).

So lower bounds on exclusion complexity may for instance serve to reduce compu-
tational complexities in algebraic function fields to the sometimes easier to determine
ones in rational function fields.

Considering suitable comparisons in verifiers one can relate these operational com-
P
lexities with certain verification complexities by focusing on “equational conse-
y
quences”.

Proposition 19. Let x € AL_ ,, & be the restriction of ¢ : QRUP — N on QF,
A(c) = min{c(=), (<)} — o(-).
(1) If o Ca for a,0' € Spec, A with supports p,p’, then

Ve, x {o}, {o,&'}) > E(S (x/p")p, p) + Alc).

@) Ifacpod, a#o for o,B,o' € Spec, 4 with supports p,q,p’, then
Vie,x,{a},{o,a'}) > " g}g’;’} E(&,(x/PB)g,a) + A(c).

(3) If A(c) > 0, then
Vie,x, o) > I(C,xp, )

for o € Spec, A with support p, and equality holds if ¢(—) = c(=) = (L) = 0.
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(4) If A is a field, (B,m)C A a real discrete valuation ring then if a,o' € Spec, A
are different and specialize in Spec, B both into some B with support m, then

V(e,x, {a},{a,a'}) > S(¢,x,B) + A(c).
((1)-(3) hold analogously for prime ideals and P = {=}.)

Remark 20. We refer to the appendix for iilustation and visualization in the geometric
situation of the cases considered. Example A.2 shows various pictures of two prime
cones with a common specialization.

Proof of Proposition 19. Let T be a respective verifier.

(1) Here I'(Y) is executable on (x/p’), since (4/p')p, — k(p) is surst. Considering
the first comparison in T which distinguishes x(«) and x(a’) we get f,g € (4/p"),
appearing in Res(I'(Y),(x/p’),) such that either f(x) < g(a) and f(o') > g(a')
or f(a) = g(a) and f(a') # g(o'); since o is a generization of o other cases are
impossible, and in both these cases we get (f — g)(a) = 0.

(2) Passing to the initial segment T,(,/) we may assume T to be executable on both
x(o) and x(a). Consider the R-algebra morphisms

k(p) «— (4/p)q = k(a) — (4/p")q — k(»).

If T is not executable on x(f), that is, I'(T) is not on x(q), then I'(T) is neither exe-
cutable on (x/p)q nor on (x/p’),. Applying Proposition 3(1) to the outward morphisms
we get even L(E,T'(Y)) > maxg ¢ (p ) N(C, (x/P)q), hence the assertion in this case.
So we may assume Y to be executable on x(f). Considering the first comparison in T
distinguishing x(«) and x(a') we get f,g € 4, appearing in Res(I'(T),x,) such that
one of the four alternatives must hold:

f@)<g(@) and f(d') > g(o),
f(@) > g(a) and f(a') < g(o),
f@)=g(a) and f(a')# g(o),
f@) #g(x) and f(o') = g(a).

So in any case (f — g)(o) # 0 or (f — g)(&’) # 0, and each of the four alternatives
implies (f — g)(B) = 0 since f§ is a common specialization of o and o’'.

(3) I'(T) is executable on x,, therefore T is executable on all x(8), § € hala.
Considering all comparisons in T distinguishing x(a) and at least one x(8), B € hala,
we get elements f1,91,... fm,gm € 4p appearing in Res(I'(T),x,) such that the system
f1=91,..., fm = gm is satisfied for f§ € hal « if and only if § = a.

(4) Here T is executable on both x(a) and x(a’). Considering the first comparison
in T distinguishing x(«) and x(&’) we get f,g € A appearing in Res(I'(Y),x) with
f(a) < g(a) and f(o') > g(a') or f(a) > g(a) and f(o') < g(o). By the discrete
valuation ring property of B, f — g or its inverse lies in B. In the one case we get
(f — 9)(B) = 0, in the other case we get (f — g)~!(B) = 0. Since for a unit e € B>
the signs of e(x), e(o'), and e(f) are the same, the order of f — g must be odd. O
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Remark 21. (1) The lower bound in Proposition 19(2) may be not very tight since for
instance sign and exclusion complexity in Lemma 16(2) may differ. In the other cases
of 19 the lower bounds match quite well the verification complexities under reasonable
assumptions on c.

(2) For the analogue of Proposition 19(3) for a prime ideal p and P = {=} we have
V(e,x,p) > I(¢,xp,p), and by Proposition 15. 2, ¥(c,x,p) = V(c,x,,p). Since hal p
is homeomorphic to Spec A4, we have I(¢,xp,p) = min{L(c,x, ) : Z(f) = {p}}. For
a € Spec, 4 one gets an analogous statement by passing to the image x, in Aj_,,
of x where A, denotes the strict real localization of A in o (cf. [38]) since hala
is homeomorphic to Spec 4,: V(c,x,o) = V(c,xp,0) = V(c,xg,00) > I(E,xp,0) =
1(¢,x,,t) (by Propositions 15(2) and 3(3)). For rational operations however, it is
sufficient to pass to x,.

Decision trees. Let (N, <) be a finite binary tree with predecessor relation <, N =
M UN, UN; the partition of the set of nodes into leaves, branching, and simple nodes.
For n € N we think < to be extended to {—n+1,...,0} UN by viewing —n+1,...,0
as linearly ordered predecessors of the root of the tree. Let s; denote program variables
fori € {—n+1,...,0} UN;,. An (QR,P)-decision tree I over n is a finite binary tree
(I, %) together with an instruction function that assigns
e to every simple node i € N; an operational instruction s; := @;(Sj,»-. -5, u,,,) Where

@, € R —n+1 =i, =<1 and ji, ¢ Ny (that is, ji, € {-n+1,...,0} UNy),

e to every branching node i € M, a test instruction SwpPisn. Where p; € P, —n+1 =

hi b} < i, and h;, b, & N,

o to every leaf i € N} a label for cases, case; € {I1,...,7}.

A path in the underlying binary tree from the root to a node together with the
restriction of the instruction function is called a path in . An input for J is a point
o € Spec, R[X] (resp. p € Spec R[X]) identifying as above a and X(«). (For P = {=}
the following definitions apply analogously to p € SpecR[X]). If o is fed into 7 it
defines its path in 77, denoted Z,, by executing the instructions of 4 successively in
the ordered field (k(supp a), <,) over R, continuing in a branching node with the right
successor if the truth value of the outcome of its test is “yes”, and with the left one
if it is “no”. Should an unexecutable division instruction occur , ends right before
it. 7 is said to be executable on « if J, ends up with a leaf. To 7, is assigned an
(QR,P)-SLP Y(Z,) in the obvious way, and Z, is uniquely represented by the pair
(Y(Z,), t0(T(F, ), ), that is, the outcome of the tests is the additional information
coded in the path Z,. Notationally, we will however not distinguish between 7, and
T(J4). By the above convention 7, is not nilly.

If a,f,... € Spec, R[X] then 5 denotes the common piece of the paths 7,, 7,
... Let Ex 7 C Spec, R[X] denote the subset of all « such that J is executable on
a, and for o € Spec, R[X] let Cell(F,x) = {f : Tp = J,} C Spec, R[X]. Clearly,
ExJ = |J{Cell(7,«) : « € Ex.J }, and by the finiteness of 7 this union can be
written as a finite one by selecting finitely many x € Ex 7.

The following statements are all evident.
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Lemma 22. (1) Cell(Z,a) is an elementary locally closed subset of Spec, R[X].
(2) Ex 7 is a constructible subset of Spec, R[X].
(3) If « € Ex J, then T, verifies Cell(J,a) in Ex 7.
(4) If « € Z(suppa) N E for a subset E C Spec, R[X], then Cel(T,0)NE # 0.
(Analogously for prime ideals and P = {=}.)

Let Ey,...,E, be pairwise disjoint and non-empty subsets of Spec. R[X]. The decision
tree 7 is said to decide the partition & = {E1,...,E,} of their union if for every j =
1,...,r and for every « € E; the path 7, leads to a case j leaf. (Throughout this paper
r=2)

Complexity. The decision complexity C(c,&) with respect to ¢ : QRUP — N is
defined as the minimum c-cost C(c,J ) = maxan g L(c, 7y) of a decision tree over
n for &.

The following two propositions, 23 and 26 below, combine the information about
what paths in decision trees verify with the bounds in Proposition 19; some statements
are specific for the real spectrum, some for the Zariski spectrum.

Proposition 23. Let P = {=,<}, and & be the restriction of ¢ : QRUP — N on QF,
A(c) = min{c(=),c(L)} —c(~). Let T be an (QX,P)-decision tree over n for {E,E'}
where E,E’ C Spec, R[X] are disjoint.

(1) If o/ Ca with supports p’ Cp satisfy o € Z(p)NE and o/ € X(p')NE', then

L(e, Taw) 2 E(,(X/P" ), P) + Ac).

(2) If 2. C B D o' with supports p Cq Dp’ satisfy o € F(p)NE and o’ € F(p')NE,
then

L(c,Tpa) > _min E(C,(X/PB)qg,q) — |Ac)].
Pel{rp'}

(3) Let a CR[X] be an ideal, and assume o with support p D a to satisfy o €
Z(P)NE, and all its proper generizations of € hala N Z(a) to satisfy o« €
F(suppa’YNE'. Then if A(c) >0,

L(c, 74) 2 1(¢,(X/a)p, ).

(4) Assume a,o’ to have both support p, « € F(P)NE and o' € ZF(p)NE' If
(B, m) Ck(p) is a real discrete valuation ring, and o,o both specialize in Spec, B into
some B with support m, then

L(c, Taw) 2 S(6,X (), B) + Alc).

Proof. (1) By Lemma 22(4) one has «,¢’ € ExZ, and 7, # Z,. By Lemma 22.
(3) and Proposition 14(2) 7, verifies {a} in {o, o'}, s0 F4u too, and one can use
Proposition 19(1).

(2) Here, J, verifies {a} in {a, o'}, and one can use Proposition 19(2) if Tox =
T.pa- Otherwise, either J, 5, verifies {f} in {,a} or {f} in {B,a’} and then one
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can use Proposition 19(1), or J,. is not executable on f§ and then L(c, Tpgn) 2>

mMaxey e {p,p’} E(c, (X/"B)qy q).
(3) and (4) follow using Proposition 19(3) and (4). O

For a real closed field R and a semi-algebraic subset E CR" the crucial condi-
tion « € Z(suppa) NE is equivalent to a € E, E C Spec, R[X] denoting the as-
sociated constructible set (cf. [8, 7.2]). In applications however often R = Q and
subsets £ C Q" appear. Practical examples (linear algebra, linear programming, etc.)
often lead to vanishing ideals that are extensions of rational or at least unirational
prime ideals in Q[X]. This makes clear the more general formulations which never-
theless may lead to at least some fragmentary information. We leave it to the reader
to check the lower bounds in Section 7 below to hold true for rational inputs as
well.

For real closed fields R the operation tilde provides the perfect correspondence be-
tween semi-algebraic partitions & in R" and constructible partitions % in Spec, R[X].
If UCR" is a semi-algebraic open subset then a semi-algebraic partition {F,F’} in
R" is said to be U-full if F U F’ D U. The minimal prime cones in the tilde of the
common boundary F N F’ will be complexity creating prime cones.

We summarize these consequences for semi-algebraic decision trees explicitly.

Theorem 24. Let R be a real closed field, and 7 be an (QF,P)-decision tree over n,
P= {=,<}, & a semi-algebraic partition in R".

(1) F decides the semi-algebraic partition F iff 7 decides the constructible par-
tition &.

(2) Assume F = {F,F'}. Then B € Spec, R[X] possesses generizations o € F,
o € F' iff B (FNF'Y". Furthermore,

dim F N F' < min{dim F,dim F’}, dimF NF’ < max{dim F,dim F’}.

(3) Let & = {F,F'} be U-full for some semi-algebraic open U CR", and assume
T to decide F. Then for every minimal prime cone B of (U NF N F'Y~ precisely
one of the following three statements holds true:

(a) Be F™, hal B\ {8} CF", and Iy verifies {B} in hal .

(b) pe F~’n.ﬁn, hal B\ {B} CF, and F; verifies {B} in hal §.

(c) B¢ F MUF ’mm, dimf =n— 1, then B has exactly two proper generizations
wc F, o € F' (both of support 0), hal g = {a, ,o'}, and Ty verifies {u}, {B}, or
{«'} in hal B.

Proof. (1) This is an immediate consequence of [8, 7.2.3]. In fact, if# = {F,...,F,},

& = {F,,...,F,}, then we have F;,NF; = (F;NF;)~ = 0 = 0, so & is indeed a partition
in Spec, R[X]. If & decides # then for each i

Fi=| J{cew(T,epnr: & e Fyn|#.
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Since  is a finite tree, these unions of cells can be written as finite unions by selecting
for every i finitely many ¢&; € F;. So by the tilde,

= J{cel(7, &) & e Fin|F

and 7 decides #. The reverse is clear.
(2) Again by [8, 7.2.3],
FnFYy~=FnF,
and by [8, 7.1.20], B € Spec, R[X] possesses generizations in ' and in F” iff § appears
in F and in F'.

Since the dimension of a semi-algebraic set is the maximum dimension of a prime
cone in its tilde ([8, 7.5.6]) we have dim FNF’ < min{dim F,dim F'} and dim FNF" <
max{dim F,dim F'}; every minimal § € (F N F’")™ possesses generizations « € ¥ and
o« € F', and one of them is a proper generization of 8 by £ N F’ = 0.

(3) We may assume FUF' = U. Let § € (UNFnE'y* )y Since U is open,
halBC U [8, 7.121], and halB\ {f} # @ by dimB < n— 1. If B € F™" then
hal B\ {8} C F’, and for every o € hal B\ {} the paths 7, and I end with different
leaves; thus, Jp verifies {f} in halﬁ Analogously, for B € F/™ .

Assume now S ¢ F o UF™", and let x € F, o € F' be proper generizations of ﬁ
Since § is minimal in (UNFNF’)~ we have hala C ¥, halo/ C F’; that is, a € 1ntUF
o €inty F'. "', We now show that dim 8 = n— 1; then « and o both have support 0 and
are the solely possible generizations of § [8, 10.2.6]. By way of contradiction assume
dim < n — 2. We have the disjoint decomposition

U =intygF UUNFNFY UintgF. 4.1

Since dim f < n— 2 there is an open semi-algebraically connected subset W C U such
that

dmWNFNF <n—2and fe W. 4.2)

(Otherwise, one could choose an algebraic set B of dimension n — 2 such that § € B,
and

dimW N((FNF)\B)y=n—-1

for every open W with § € W. Since the W and (F N F')™ \ B are compact for the
constructible topology [8, 7.1.12], (F N F’')Y~\ B would contain a proper generization
y of B, contradicting B € ((F N F’)~)™".) But (4.2) implies that W \ (F N F’) is
semi-algebraically connected. So the connected components of intgf' and int; F' in
which « and of lie are the same, contradicting the disjointness of the decomposition

4.1).
Therefore dim f = n — 1. The common path 7, g, of all three (and hence J3) now
verifies {a}, {8}, or {'} in hal f since either T, # T gy or Tg # Tuw OF Ty # Tup
(|
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The tilde furthermore provides information about the set of points in R" producing
a long path in a decision tree and its dimensionality.

Proposition 25. Let R be a real closed field, and I be an (QF,P)-decision
tree over n, P= {=,<}.

(1) For any irreducible algebraic subset E C R" and any minimal prime cone o €
(RegE)~ the trace Cell(7,a)NE of Cel{T ,a) in E is an elementary locally closed
semi-algebraic subset of E of maximal dimension dimE.

Assume T to decide a semi-algebraic partition {F,F'}, and let & be the restriction
of ¢ : QRUP — N on QR, A(c) = min{c(=),c(L)} — ().

@

e = e(&,F NF') = min{E(C, Xauppa» suppa) : & € (F NF)™ )™},
then the subset
{E€FNF' 1 L(c,T¢) < e— |A(0)|}

of all points in the common boundary of F and F' producing a path in 7 of shorter
length than e + A(c) is a semi-algebraic subset of F NF' of dimension strictly less
than dim F N F'.

(3) If {F,F'} is U-full for some semi-algebraic open U CR", A(c) > 0, and

i=i(¢,UNFNF) =min{I(é Xuppo®) : @ € (UNFNFy~ )™},
then the subset
{EeUNFNF :Lc,T¢) < i}

of all points in the boundary of U NF in U producing a path in I of shorter
length than i is a semi-algebraic subset of UNF NF' of dimension strictly less than
dmUNFNF.

As a consequence, if & decides membership in an irreducible algebraic subset
F CR", then there is a non-void Zariski open subset G CF such that for all £ € G
the path length is bounded below as

L(c,T¢) 2 i(C,F).
Proof. (1) For o € £ we have dim o = dim E iff
o € ((Reg E)™)™" = Spec, k(E)

([8, 7.6.1 and 2]). So by [8, 7.5.8] dimCell(J,0) NE > dima = dimE if a €
(RegE)™)™.
2) If dim § = dim F N F’ and

Be{EcFNF :L(c,T¢) < e— AN}, (4.3)
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then f € (FNF')~)™ and possesses generizations « € F, o’ € F’ by Theorem 24(2)
one of them proper. Relation (4.3), Proposition 23(1) or (2) and Lemma 16(1) imply
the contradiction

e~ A@)| > L(e, Tp) = L(c, Tupw) = € — |A)]:

(3). Analogously, using Theorem 24(3) and Proposition 23(3) for the cases (a) and
(b) in Theorem 24(3) and Proposition 23(1) together with Lemma 16(3) for the case
(¢) in Theorem 24(3). O

For comparison we now turn to similar statements as in Proposition 23 for the order-
free case. Statements (4) and (5) in the next proposition have no real counterpart since
the specializations of a prime cone form a totally ordered chain [8, 7.1.22]; the first
three statements are completely analogous to the above ones in Proposition 23.

Proposition 26. Let P = {=}, and ¢ be the restriction of ¢ : QRUP — N on QF,
A(c) = c(=) — c(—). Let T be an (QF,P)-decision tree over n for {E,E'} where
E,E' CSpecR[X] are disjoint.

(1) If p' Cp satisfy p € Z(p)NE and p' € Z(p))NE', then

L(c, Tpp) > E(E,(X/P )ps p) + Alc).
Q) IfpCqDyp satisfy p e Z(p)NE and p' € ZF(p')NE', then

L(c,Tpqp) 2 _min E(S(X/PB)g,q) — |A(c)].

PBe{pr'}
(3) Let a CR[X] be an ideal, a Cp € Z(p) N E, and assume all proper generiza-
tions p’ € halp N Z(a) to satisfy p' € Z(p')YNE'. Then if A(c) >0,

L(e, -9_13) > I(c, (X/a)pa p).

@ IFpoQCy satisfy pe Zp)NE and p' € ZW)NE', then

L(c,Tpnp)> min  E@E X/Q)p, B)+ Ac).
Bel{p.p'}

BGYIfpcagop,pDRCp,pe ZMP)NE and p' € Z(p')NE’, then
Lic, g—p,p',q,n) > E(,(X/Q )q-0) — ,A(C),

Proof. (4) Since I, verifies {p} in {p,p’} and J,, is executable on the common
generization Q, I, q ,» must verify {p} in {p,Q} or {p’} in {p’, Q}. So the statement
follows from the analogue of Proposition 19(1) for prime ideals.

(5) The initial segment J7, g0 of Fp 4 and J, o coincides with one of them.
So the statement follows from (2) and (3) together with Lemma 16(1).

We skip the (straightforward) discussion of similar consequences as in Theorem 24
and Proposition 25 for the order-free case and finally we mention the two degree based
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lower bounds on verification compiexities due to Strassen [47] and Ben-Or [4] which
we will extend in the next section.

For isolation complexity of prime ideals one has the following lower bound which
is contained in [47] together with Proposition 26(3); precisely one extracts from [47]:

Theorem 27 (Strassen [47]). Let R be a field, p D p’ prime ideals in R[X]. Then for
the multiplicative cost function

V(cw X/p',p) = I(ca, (X/P' ), p) > log, deg X(p) — log, deg X (p').

The proof of this result is based on Theorem 9 and the reduced Bézout’s inequality
5(7), since (R[X]/p’), does not need to be Cohen—Maccaulay.

It is easy to see by examples that a respective analogue of Theorem 27 for isolation
complexity of prime cones does not hold in general, at least in its relative form when
p’ # 0. In the real case there is however an other way to use the degree argument due
to Ben-Or which is based on a result by Milnor [29] and Thom [48]. (See also the
further developments mentioned in the introduction.)

Theorem 28 (Ben-Or [4]). Let R be a real closed field, and E C Spec, R[X] an ele-
mentary locally closed subset. Then for c. < =1, /-<},

log, #E

V(cx.<,E, Spec, R[X]) > o3 "

where #E denotes the number of connected components of E.

This theorem yields a global type lower bound on decision trees by considering the
union of all cells of all paths of points of the decided set [4]. But it also implies lower
bounds on isolation complexity.

Corollary 29. Let R be a real closed field.
(1) If f € R[X] is irreducible, p = fR[X], then

log, #Spec, R[X]; n+1
log, 9 2

I(C*’XP’ p) _>_

(2) If f € AR _rxy> all fi € R, and p € R[Xy,...,Xy] represents the product of all
prime divisors appearing in at least one of the f;, then

log, #Spec, R[X], n+m

L(cx, X(0), /) 2 og, 9 2

Proof. (2) If I' with universal input ur € A}_,, computes f on X(0) then one
can manufacture a verifier for Spec (Ar)my, in Spec. R[X] by introducing for each
division step and each f; a zero test; hence, the assertion follows by Theorem 28 and
#Spec,(4r)ny, > #Spec, R[X],.
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(1) By (2), using again ¥ Spec [X], > #Spec, R[X], for non-zero multiples p €
RiX1of f£. O

5. Degree-derivation bounds

In the next proposition we give a degree analysis in the derivation theorem given in
[26] and [2] (see also [34]) and consider a variant of it for Euler derivations which takes
additive operations into account as well. (The bound based on Euler derivations has
been motivated by Morgenstern [33, Théoréme 20], and has been found independently
by Strassen.)

Proposition 30. Let R be a field, f € R(X), and 0f = (81f....,0nf) € Ah_pxy
aEf = (Xlalf,---’Xnanf) € A?{-—»R(X) Then

(1) L(cs, X(0), f) = (1/log, 6)log, deg X (0) o1,
(2) L(cy x,X(0), f) > log, deg X (0) fOp f for ¢y = 1{+,—,*,/}-

Proof. Let 4 = R[X], SCA\ {0} be an arbitrary multiplicative system and X5 the
image of X in A}_, As Let ' = (I'y,...,I}) be an QR-SLP over n, executable on Xg,
with result sequence Res(1', Xs) = (X1,..., Xn,71,.- -5 7).

(1) We show by induction on ¢ that if (I, X5) computes some f € Ag then

deg X5 fof < 6L-D), 5.D)

This is clear if t = 0. For ¢t > 1, let IV = (I'},...,I"}) denote the QR-SLP over n 4 1
obtained from I" by deleting the first instruction I'; and replacing in all successor
instructions calls to the result of the first one by calls to an additional new input
component. Let A’ = A[X,], and let S’ C 4"\ {0} denote the preimage of A7 under the
substitution ¢ : 4’ — Ag, Xp — ry, extending 4 — As. By construction, I is executable
on X} = (Xo,...,Xn) € A\",‘f_{A,, and computes some f' € Ay with o5/ (f’) = f. By
the inductive hypothesis ’

deg X3, 10 f/ < 64T,
where & f' = (Gof’,...,0nf"), and the chain rule gives
5,~f=Gsf(aif/)+dsl(6of/)‘(6,-1‘1) for i > 1. (5.2)

Now (5.1) follows from the inductive hypothesis by considering for every w; € QF the
case that ) results in instruction I'; from an application of ;. Leaving the discussion
of a linear operation to the reader, we exemplarily inspect the case when w; € {*,/}
and assume for concreteness the arguments to be X; and X3, so r; = X - X; resp.
r = X1/X;. Then d;ry =0 for 2 < i < n, and 011y = X5, Orry = Xy tesp. 011y = 1/X,,
oy = (—1/X7) - (X1/X3). Using a vector operation of degree 3 and one of degree 2
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according to Lemma 31(1) below to produce y = (X; - X2,00f" - X2,00f' - X1) resp.
y = (X1/X2,00f'/X2,00f" - Xo/X2) Lemma 8 yields

deg X4, f'(0' f1)y < 6He-TIH = ghlewT),
Now applying the substitution gg to this point one obtains from Proposition 5(6)
deg ri Xs fos/(0' f)os (y) < 64D

since the generator Xy —r; € A, of its kernel can be presented by a linear polynomial
which is regular with respect to XY, f/(¢’ f')y. Using linear operations and a projection
(Proposition 5(5)) Egs. (5.2) imply

deg X5 fOf < degnXsfos (' fMas(y),

hence the asserted (5.1).

(2) Parallel to the above proof arrangement we show by induction on ¢ that if (I, Xs)
computes f € Ag then deg X5 f0r f < 2M¢+=T) however now under the additional as-
sumption that Res(I, Xs) € (44 )*** since logarithmic derivatives will come in. Keeping
the above notations the chain rule gives in the inductive step

X - oin
r

X0, f = 05/(Xi0i f') + 65/ (X000 f') - for i > 1.

If i =X, - X, or r; = X/X, then (X; - 0;n1)/r1 € {—1,0,1}, and then linear operations
and only one quadratic operation to produce r; are required to complete the inductive
argument. If r| = X| £ X5 then
Xy -0 1 Xy - Oary
no rno

so only one quadratic operation as in Lemma 31(1) and linear ones are required to
complete the induction. Constant and scalar multiplication operations do not require
non-linear operations. [

When part of a computation is known explicitly one can use degrees of certain
vector operations rather than a step by step analysis to obtain better degree bounds.
The following lemma exemplifies this in some concrete cases.

Lemma 31. Let R be a field.

(1) (Segre) The vector operation (T1, T\ T3/Ts,..., T1T,/T») € (QR)"‘1 of arity a > 2
has degree a — 1.

(2) (Veronese) The vector operation (Tl"1 Tl 0<Y ;<r)€ (QR)(T) of arity
a has degree r*(r > 1) .

(3) The matrix vector multiplication operation (T;;)(T}) € (QR)" of arity a-b+b
has degree 2°.

(4) The operation of solving a quadratic linear system (T,-j)‘l(T; jE (QR)" (Cram-
er’s formula) of arity a* + a has degree 2°.
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Proof. The first statement follows from Example 4(2) (using n =2, m = a — 1); for
the second one see [17, p. 54, Ex. 7.1]. For the remaining ones one can use Proposition
5(7); the details are left to the reader. O

Theorem 32. Let R be a field of characteristic zero, p C R[X] a prime principal ideal
and u € R[X], an uniformizing parameter. Then

(1) I(c, Xy, p) 2 (1/l0g, 6)(log, deg(X;, 0u)(p) — log, deg Xpu — log,(n + 1)),

(2) I(ctx,Xp,p) 2> log, deg(X,0cu)(p) — log, deg X,u — log,(n+ 1).

Proof. (1) Let 7 = e - " be any parameter of the discrete valuation ring R[X],,
e € RIX]) and p > 1, such that L(c.,Xp,n) = I(cx,Xp,p). Denote this number by
. Lemma 8 and Proposition 30(1) imply deg(X,uhdh)(0) < deg(X,u)(0) - 6', thereby
viewing hoh as a vector operation of arity n and degree at most 6'. Observe that the
elements of £(0) = R(X)
6,~h 0;e

u- T :'u-aiu..'_u._’e—
lie in R[X],, and their residues in k(p) coincide with those of d;u up to the constant
factor . By Lemma 31(1) one obtains for f = (ud\h/h,...,ud,h/h) A% g, after
a projection

deg X,uf = deg(X,uf)(0) < deg(X,u)(0)-6' - (n+ 1).

Obviously, the generator u of the maximal ideal of R[X], can be presented by a linear
polynomial which is regular with respect to X,uf; so by Proposition 5(6)

deg(X,0u)(